贝尔在大学的时候,量子论大厦主体部分的建设已经尘埃落定,基本的理论框架已经由海森堡和薛定谔所打造完毕,而玻尔已经为它作出了哲学上最意味深长的诠释。20世纪物理史上最激动人心的那些年代已经逝去,没能参予其间当然是一件遗憾的事,但也许正是因为这样,人们得以稍稍冷静下来,不致于为了那伟大的事业而过于热血沸腾,身不由己地便拜倒在尼尔斯•;玻尔那几乎不可抗拒的个人魔力之下。贝尔不无吃惊地发现,自己并不同意老师和教科书上对于量子论的正统解释。海森堡的不确定性原理——它听上去是如此具有主观的味道,实在不讨人喜欢。贝尔想要的是一个确定的,客观的物理理论,他把自己描述为一个爱因斯坦的忠实追随者。
毕业以后,贝尔先是进入英国原子能研究所(AERE)工作,后来转去了欧洲粒子中心(CERN)。他的主要工作集中在加速器和粒子物理领域方面,但他仍然保持着对量子物理的浓厚兴趣,在业余时间里密切关注着它的发展。1952年玻姆理论问世,这使贝尔感到相当兴奋。他为隐变量理论的想法所着迷,认为它恢复了实在论和决定论,无疑迈出了通向那个终极梦想的第一步。这个终极梦想,也就是我们一直提到的,使世界重新回到客观独立,优雅确定,严格遵守因果关系的轨道上来。贝尔觉得,隐变量理论正是爱因斯坦所要求的东西,可以完成对量子力学的完备化。然而这或许是贝尔的一厢情愿,因为极为讽刺的是,甚至爱因斯坦本人都不认同玻姆!
不管怎么样,贝尔准备仔细地考察一下,对于德布罗意和玻姆的想法是否能够有实际的反驳,也就是说,是否真如他们所宣称的那样,对于所有的量子现象我们都可以抛弃不确定性,而改用某种实在论来描述。1963年,贝尔在日内瓦遇到了约克教授,两人对此进行了深入的讨论,贝尔逐渐形成了他的想法。假如我们的宇宙真的是如爱因斯坦所梦想的那样,它应当具有怎样的性质呢?要探讨这一点,我们必须重拾起爱因斯坦昔日与玻尔论战时所提到的一个思想实验——EPR佯谬。
要是你已经忘记了EPR是个什么东西,可以先复习一下我们史话的8…4。我们所描述的实际上是经过玻姆简化过的EPR版本,不过它们在本质上是一样的。现在让我们重做EPR实验:一个母粒子分裂成向相反方向飞开去的两个小粒子A和B,它们理论上具有相反的自旋方向,但在没有观察之前,照量子派的讲法,它们的自旋是处在不确定的叠加态中的,而爱因斯坦则坚持,从分离的那一刻起,A和B的状态就都是确定了的。
我们用一个矢量来表示自旋方向,现在甲乙两人站在遥远的天际两端等候着A和B的分别到来(比方说,甲在人马座的方向,乙在双子座的方向)。在某个按照宇宙标准时间所约好了的关键时刻(比方说,宇宙历767年8月12日9点整,听起来怎么像银英传,呵呵),两人同时对A和B的自旋在同一个方向上作出测量。那么,正如我们已经讨论过的,因为要保持总体上的守恒,这两个自旋必定相反,不论在哪个方向上都是如此。假如甲在某方向上测量到A的自旋为正(+),那么同时乙在这个方向上得到的B自旋的测量结果必定为负(-)!
换句话说,A和B——不论它们相隔多么遥远——看起来似乎总是如同约好了那样,当A是+的时候B必定是-,它们的合作率是100%!在统计学上,拿稍微正式一点的术语来说,(A+,B-)的相关性(correlation)是100%,也就是1。我们需要熟悉一下相关性这个概念,它是表示合作程度的一个变量,假如A和B每次都合作,比如A是+时B总是-,那么相关性就达到最大值1,反过来,假如B每次都不和A合作,每当A是+是B偏偏也非要是+,那么(A+,B-)的相关率就达到最小值-1。当然这时候从另一个角度看,(A+,B+)的相关就是1了。要是B不和A合作也不有意对抗,它的取值和A毫无关系,显得完全随机,那么B就和A并不相关,相关性是0。
在EPR里,不管两个粒子的状态在观测前究竟确不确定,最后的结果是肯定的:在同一个方向上要么是(A+,B-),要么是(A-,B+),相关性是1。但是,这是在同一方向上,假设在不同方向上呢?假设甲沿着x轴方向测量A的自旋,乙沿着y轴方向测量B,其结果的相关率会是如何呢?冥冥中一丝第六感告诉我们,决定命运的时刻就要到来了。
实际上我们生活在一个3维空间,可以在3个方向上进行观测,我们把这3个方向假设为x,y,z。它们并不一定需要互相垂直,任意地取便是。每个粒子的自旋在一个特定的方向无非是正负两种可能,那么在3个方向上无非总共是8种可能(把每个方向想像成一根爻,那么组合结果无非是8个卦)。
x y z+ + ++ + …+ … ++ … …… + +… + …… … +… … …
对于A来说有8种可能,那么对于A和B总体来说呢?显然也是8种可能,因为我们一旦观测了A,B也就确定了。如果A是(+,+,-),那么因为要守恒,B一定是(-,-,+)。现在让我们假设量子论是错误的,A和B的观测结果在分离时便一早注定,我们无法预测,只不过是不清楚其中的隐变量究竟是多少的缘故。不过没关系,我们假设这个隐变量是H,它可以取值1-8,分别对应于一种观测的可能性。再让我们假设,对应于每一种可能性,其出现的概率分别是N1,N2……一直到N8。现在我们就有了一个可能的观测结果的总表:
Ax Ay Az Bx By Bz 出现概率+ + + … … … N1+ + … … … + N2+ … + … + … N3+ … … … + + N4… + + + … … N5… + … + … + N6… … + + + … N7… … … + + + N8
上面的每一行都表示一种可能出现的结果,比如第一行就表示甲观察到A在x,y,z三个方向上的自旋都为+,而乙观察到B在3个方向上的自旋相应地均为-,这种结果出现的可能性是N1。因为观测结果8者必居其一,所以N1+N2+…+N8=1,这个各位都可以理解吧?
现在让我们运用一点小学数学的水平,来做一做相关性的练习。我们暂时只察看x方向,在这个方向上,(Ax+,Bx-)的相关性是多少呢?我们需要这样做:当一个记录符合两种情况之一:当在x方向上A为+而B同时为-,或者A不为+而B也同时不为-,如果这样,它便符合我们的要求,标志着对(Ax+,Bx-)的合作态度,于是我们就加上相应的概率。相反,如果在x上A为+而B也同时为+,或者A为-而B也为-,这是对(Ax+,Bx-)组合的一种破坏和抵触,我们必须减去相应的概率。
从上表可以看出,前4种可能都是Ax为+而Bx同时为-,后4种可能都是Ax不为+而Bx也不为-,所以8行都符合我们的条件,全是正号。我们的结果是N1+N2+…+N8=1!所以(Ax+,Bx-)的相关是1,这毫不奇怪,我们的表本来就是以此为前提编出来的。如果我们要计算(Ax+,Bx+)的相关,那么8行就全不符合条件,全是负号,我们的结果是-N1-N2-…-N8=-1。
接下来我们要走得远一点,A在x方向上为+,而B在y方向上为+,这两个观测结果的相关性是多少呢?现在是两个不同的方向,不过计算原则是一样的:要是一个记录符合Ax为+以及By为+,或者Ax不为+以及By也不为+时,我们就加上相应的概率,反之就减去。让我们仔细地考察上表,最后得到的结果应该是这样的,用Pxy来表示:
Pxy=-N1-N2+N3+N4+N5+N6-N7-N8
嗯,蛮容易的嘛,我们再来算算Pxz,也就是Ax为+同时Bz为+的相关:
Pxz=-N1+N2-N3+N4+N5-N6+N7-N8
再来,这次是Pzy,也就是Az为+且By为+:
Pzy=-N1+N2+N3-N4-N5+N6+N7-N8
好了,差不多了,现在我们把玩一下我们的计算结果,把Pxz减去Pzy再取绝对值:
|Pxz-Pzy|=|-2N3+2N4+2N5-2N6|=2 |N3+N4-N5-N6|
这里需要各位努力一下,超越小学数学的水平,回忆一下初中的知识。关于绝对值,我们有关系式|x-y|≤|x|+|y|,所以套用到上面的式子里,我们有:
|Pxz-Pzy|=2 |N3+N4-N5-N6|≤2(|N3+N4|+|N5+N6|)
因为所有的概率都不为负数,所以2(|N3+N4|+|N5+N6|)=2(N3+N4+N5+N6)。最后,我们还记得N1+N2+。。。+N8=1,所以我们可以从上式中凑一个1出来:
2(N3+N4+N5+N6)=1+(-N1-N2+N3+N4+N5+N6-N7-N8)
看看我们前面的计算,后面括号里的一大串不正是Pxy吗?所以我们得到最终的结果:
|Pxz-Pzy|≤1+Pxy
恭喜你,你已经证明了这个宇宙中最为神秘和深刻的定理之一。现在放在你眼前的,就是名垂千古的“贝尔不等式”。它被人称为“科学中最深刻的发现”,它即将对我们这个宇宙的终极命运作出最后的判决。
(我们的证明当然是简化了的,隐变量不一定是离散的,而可以定义为区间λ上的一个连续函数。即使如此,只要稍懂一点积分知识也不难推出贝尔不等式来,各位有兴趣的可以动手一试。)
第十一章 上帝的判决
一
|Pxz-Pzy|≤1+Pxy
嗯,这个不等式看上去普普通通,似乎不见得有什么神奇的魔力,更不用说对于我们宇宙的本质作出终极的裁决。它真的有这样的威力吗?
我们还是先来看看,贝尔不等式究竟意味着什么。我们在上一章已经描述过了,Pxy代表了A粒子在x方向上为+,而同时B粒子在y方向上亦为+这两个事件的相