德义奇也毫不含糊地向人们推销多宇宙的观点,他针对奥卡姆剃刀对于〃无法沟通的宇宙的存在〃提出的诘问时说,MWI是最为简单的解释。相对于种种比如〃意识〃这样稀奇古怪的概念来说,多宇宙的假设实际上是最廉价的!他甚至描述了一种〃超脑〃实验,认为可以让一个人实际地感受到多宇宙的存在!接下来是玻姆,他坦然地准备接受放弃物理中的定域性,而继续维持实在性。〃对于爱因斯坦来说,确实有许多事情按照他所预料的方式发生。〃玻姆说,〃但是,他不可能在每一件事情上都是正确的!〃在玻姆看来,狭义相对论也许可以看成是一种普遍情况的一种近似,正如牛顿力学是相对论在低速情况下的一种近似那样。作为玻姆的合作者之一,巴西尔·海利(Basil Hiley)也强调了隐函数理论的作用。而约翰·惠勒(John Taylor)则描述了另一种完全不同的解释,也就是所谓的〃系综〃解释(the ensemble interpretation)。系综解释持有的是一种非常特别的统计式的观点,也就是说,物理量只对于平均状况才有意义,对于单个电子来说,是没有意义的,它无法定义!我们无法回答单个系统,比如一个电子通过了哪条缝这样的问题,而只能给出一个平均统计!我们在史话的后面再来详细地介绍系综解释。
在这样一种大杂烩式的争论中,阿斯派克特实验似乎给我们的未来蒙上了一层更加扑朔迷离的影子。爱因斯坦有一次说:〃虽然上帝神秘莫测,但他却没有恶意。〃但这样一位慈祥的上帝似乎已经离我们远去了,留给我们一个难以理解的奇怪世界,以及无穷无尽的争吵。我们在隐函数这条道路上的探索也快接近尽头了,关于玻姆的理论,也许仍然有许多人对它表示足够的同情,比如John Gribbin在他的名作《寻找薛定谔的猫》(In Search of Schrodinger's Cat)中还把自己描述成一个多宇宙的支持者,而在10年后的《薛定谔的猫以及对现实的寻求》(Schrodinger's Kittens and the Search for Reality)一书中,他对MWI的热情已经减退,而对玻姆理论表示出了谨慎的乐观。我们不清楚,也许玻姆理论是对的,但我们并没有足够可靠的证据来说服我们自己相信这一点。除了玻姆的隐函数理论之外,还有另一种隐函数理论,它由Edward Nelson所发明,大致来说,它认为粒子按照某种特定的规则在空间中实际地弥漫开去(有点像薛定谔的观点),类似波一般地确定地发展。我们不打算过多地深入探讨这些观点,我们所不满的是,这些和爱因斯坦的理想相去甚远!为了保有实在性而放弃掉定域性,也许是一件饮鸩止渴的事情。我们不敢说光速绝对地不可超越,只是要推翻相对论,现在似乎还不大是时候,毕竟相对论也是一个经得起考验的伟大理论。
我们沿着这条路走来,但是它当初许诺给我们的那个美好蓝图,那个爱因斯坦式的理想却在实验的打击下终于破产。也许我们至少还保有实在性,但这不足以吸引我们中的许多人,让他们付出更多的努力和代价而继续前进。阿斯派克特实验严酷地将我们的憧憬粉碎,它并没有证明量子论是对的(它只是支持了量子论的预言,正如我们讨论过的那样,没什么理论可以被〃证明〃是对的),但它无疑证明了爱因斯坦的世界观是错的!事实上,无论量子论是错是对,我们都已经不可能追回传说中的那个定域实在的理想国,而这,也使我们丧失了沿着该方向继续前进的很大一部分动力。就让那些孜孜不倦的探索者继续前进,而我们还是退回到原来的地方,再继续苦苦追寻,看看有没有柳暗花明的一天。
*********
饭后闲话:超光速
EPR背后是不是真的隐藏着超光速我们仍然不能确定,至少它表面上看起来似乎是一种类似的效应。不过,我们并不能利用它实际地传送信息,这和爱因斯坦的狭义相对论并非矛盾。
假如有人想利用这种量子纠缠效应,试图以超光速从地球传送某个消息去到半人马座α星(南门二,它的一颗伴星是离我们地球最近的恒星,也即比邻星),他是注定要失败的。假设某个未来时代,某个野心家驾驶一艘宇宙飞船来到两地连线的中点上,然后使一个粒子分裂,两个子粒子分别飞向两个目标。他事先约定,假如半人马星上观测到粒子是〃左旋〃,则表示地球上政变成功,反之,如是〃右旋〃则表示失败。这样的通讯建立在量子论的这个预测上:也就是地球上观测到的粒子的状态会〃瞬间〃影响到遥远的半人马星上另一个粒子的状态。但事到临头他却犯难了:假设他成功了,他如何确保他在地球上一定观测到一个〃右旋〃粒子,以保证半人马那边收到〃左旋〃的信息呢?他没法做到这点,因为观测结果是不确定的,他没法控制!他最多说,当他做出一个随机的观测,发现地球上的粒子是〃右旋〃的时候,那时他可以有把握地,100%地预言遥远的半人马那里一定收到〃左〃的信号,虽然理论上说两地相隔非常遥远,讯息还来不及传递过来。如果他想利用贝尔不等式,他也必须知道,在那一边采用了什么观测手段,而这必须通过通常的方法来获取。这一切都并不违反相对论,你无法利用这种〃超光速〃制造出信息在逻辑上的自我矛盾来(例如回到过去杀死你自己之类的)。
在这种原理上的量子传输(teleportation)事实上已经实现。我国的潘建伟教授在此领域多有建树。
2000年,王力军,Kuzmich等人在Nature上报道了另一种〃超光速〃(Nature V406),它牵涉到在特定介质中使得光脉冲的群速度超过真空中的光速,这本身也并不违反相对论,也就是说,它并不违反严格的因果律,结果无法〃回到过去〃去影响原因。同样,它也无法携带实际的信息。
其实我们的史话一早已经讨论过,德布罗意那〃相波〃的速度c^2/v就比光速要快,但只要不携带能量和信息,它就不违背相对论。相对论并非有些人所想象的那样已被推翻,相反,它仍然是我们所能依赖的最可靠的基石之一。
四
这已经是我们第三次在精疲力竭之下无功而返了。隐变量所给出的承诺固然美好,可是最终的兑现却是大打折扣的,这未免教人丧气。虽然还有玻姆在那里热切地召唤,但为了得到一个决定性的理论,我们付出的代价是不是太大了点?这仍然是很值得琢磨的事情,同时也使得我们不敢轻易地投下赌注,义无反顾地沿着这样的方向走下去。
如果量子论注定了不能是决定论的,那么我们除了推导出类似〃坍缩〃之类的概念以外,还可以做些什么假设呢?
有一种功利而实用主义的看法,是把量子论看作一种纯统计的理论,它无法对单个系统作出任何预测,它所推导出的一切结果,都是一个统计上的概念!也就是说,在量子论看来,我们的世界中不存在什么〃单个〃(individual)的事件,每一个预测,都只能是平均式的,针对〃整个集合〃(ensemble)的,这也就是〃系综解释〃(the ensemble interpretation)一词的来源。
大多数系综论者都喜欢把这个概念的源头上推到爱因斯坦,比如John Taylor,或者加拿大McGill大学的B。 C。 Sanctuary。爱因斯坦曾经说过:〃任何试图把量子论的描述看作是对于'单个系统'的完备描述的做法都会使它成为极不自然的理论解释。但只要接受这样的理解方式,也即(量子论的)描述只能针对系统的'全集',而非单个个体,上述的困难就马上不存在了。〃这个论述成为了系综解释的思想源泉(见于Max Jamer《量子力学的哲学》一书)。
嗯,怎么又是爱因斯坦?我们还记忆犹新的是,隐变量不是也把他拉出来作为感召和口号吗?或许爱因斯坦的声望太隆,任何解释都希望从他那里取得权威性,不过无论如何,从这一点来说,系综和隐变量实际上是有着相同的文化背景的。但是它们之间不同的是,隐变量在作出〃量子论只不过是统计解释〃这样的论断后,仍然怀着满腔热情去寻找隐藏在它背后那个更为终极的理论,试图把我们所看不见的隐变量找出来以最终实现物理世界所梦想的最高目标:理解和预测自然。它那锐意进取的精神固然是可敬的,但正如我们已经看到的那样,在现实中遭到了严重的困难和阻挠,不得不为此放弃许多东西。
相比隐变量那勇敢的冲锋,系综解释选择固本培元,以退为进的战略。在它看来,量子论是一个足够伟大的理论,它已经界定了这个世界可理解的范畴。的确,量子论给我们留下了一些盲点,一些我们所不能把握的东西,比如我们没法准确地同时得到一个电子的位置和动量,这叫一些持完美主义的人们觉得坐立不宁,寝食难安。但系综主义者说:〃不要徒劳地去探索那未知的领域了,因为实际上不存在这样的领域!我们的世界本质上就是统计性质的,没有一个物理理论可以描述'单个'的事件,事实上,在我们的宇宙中,只有'系综',或者说'事件的全集'才是有物理意义的。〃
这是什么意思呢?我们还是用大家都熟悉的老例子,双缝前的电子来说明问题。当电子通过双缝后,假设我们没有刻意地去观察它,那么按照量子论,它应该有一个确定而唯一的,按照时间和薛定谔方程发展的态矢量:
|电子》=|穿过左缝》+|穿过右缝》
按照标准哥本哈根解释,这意味着单个电子必须同时处在|左》和|右》两个态的叠加之中,电子没有一个确定的位置,它同时又在这里又在那里!按照MWI,这是一种两个世界的叠加。按照隐变量,所谓的叠加都是胡扯,量子论的这种数学形式是靠不住的,假如我们考虑了不可见的隐变量,我们就能确实