《物理世界奇遇记》

下载本书

添加书签

物理世界奇遇记- 第21部分


按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
法的人那样,过着无忧无虑的生活了。遗憾的是,这两者是同样
不可能实现的,因为它们同样违反了概率定理。”
“关于从海水中提取热量来产生轮船锅炉中的蒸汽是一种荒
唐的想法,这一点我倒是接受得了的,”汤普金斯先生说,“不
过,我实在看不出这个问题同概率定理有什么关系。你肯定没有
提出,应该用骰子和轮盘来充当这种不用燃料的机器的运动部件
不是吗?”
“我当然不会这样建议啦!”教授大声笑说,“起码,我不
认为哪个永动机的发明者会提出这样的建议,哪怕他是最想入非
非的一个。问题在于,热过程本身就其本质而论,是同扔骰子非
常相似的;希望热量从较冷的物体流到较热的物体上,就等于希
望金钱从赌场主的钱柜流到你的腰包里。”
“你是说,赌场主的钱柜是冷的,我的腰包是热的了?”汤
普金斯先生问道,他现在觉得非常困惑。
“是的,从某种意义上说就是这样,”教授回答说,“要不
是你漏听我上星期那次演讲的话,你就会明白,热并不是什么别
的,而只不过是无数粒子——也就是构成一切物质的所谓原子和
分子——在作快速的。不规则的运动。这种分子运动进行得越迅
猛,物体就显得越热。由于这种分子运动非常不规则,它就要遵
守概率定理。我们很容易证明,一个由大量粒子构成的系统最可
能实现的状态,必定相当于现有的总能量在粒子间或多或少均匀
分布的状态。如果物体的一部分受到热,也就是说,如果在这个
区域内分子开始运动得比较快,那么,我们应该预料到,这个额
外的能量将通过大量偶然的碰撞,很快分给所有其他粒子。不过,
由于碰撞是纯属偶然的,也有可能发生这样一种情况,即仅仅出
于偶然的机会,某一组粒子可能牺牲别的粒子,多得到一部分现
有的能量。热能这样自发集中在物体某一特定的部分,就相当于
热量逆着温度梯度流动,从原理上说,我们是不能排除这种可能
性的。但是,要是谁去计算发生热量这种自发集中的相对概率,
他所得到的数值将非常非常之小,因此,实际上可以认为这种现
象是根本不可能发生的。”
“哦,现在我明白了,”汤普金斯先生说,“你是说,这种
第二类永动机偶尔也能够工作,但发生这种情况的机会非常之小,
就像一次扔100个骰子,100个骰子都是6的机会那么小。”
“可能性比这还要小得多,”教授说,“事实上,在同大自
然赌博时,我们赌赢的概率是那么微小,甚至连想找些字眼来形
容它都很困难。举个例子吧,我可以计算出这个房间里的所有空
气全部自动集中在桌子下面,而让其余地方处处成为绝对真空的
机会有多大。这时,你一次扔出的骰子的数目应该等于这个房间
里空气分子的数目,所以,我必须知道这里有多少个分子。我记
得,在大气压力下,一立方厘米空气所包含的分子数是一个20
位数,所以,这整个房间里的空气分子大约是27位数的数字。
桌子下面的空间大致是这个房间总体积的1/100, 因此,任何一
个特定的分子正好处在桌子下面,而不处在别的地方的机会也是
1/100。 这样,要算出所有分子一下子全处在桌子下面的机会,
就必须用1/100乘以1/100,再乘以1/100, 这样一直乘下去,直
到对房间里的每一个分子都乘完。我这样得到的结果,将是一个
在小数点后面有54个零的小数。”
“唷!”汤普金斯先生叹了一口气,“我当然不能把赌注押
在这样小的机会上了!但是,这一切岂不是意味着偏离均匀分布
的情形干脆就不可能发生吗?”
“正是这样,”教授同意说,“你可以把我们不会因为所有
空气全部处在桌子下面而窒息致死看做是一个真理;也正因为这
样,你酒杯中的液体才不会自动开始沸腾。但是,如果你所考虑
的区域小得多,它所包含的分子(骰子)的数目就少得多,这时,
偏离统计分布的可能性就大得多了。例如,就在这个房间里,空
气分子通常就会自发地在某些地点上聚集得比较多一些,从而产
生暂时的不均匀性,这就叫做密度的统计涨落。当阳光通过地球
的大气时,这种不均匀性会使光谱中的蓝光发生散射,从而使天
空呈现我们所熟悉的蓝色。如果没有这种密度涨落存在,天空就
会永远完全是黑的,那时,即使在大白天,星星也会变得清晰可
见了。同样,当液体的温度升高到接近沸点时,它们会稍稍呈乳
白色,这也可以用分子运动的不规则性所产生的类似密度涨落来
解释。不过,这种涨落是极不可能大规模发生的、大尺度的涨落,
我们可能几十亿年也看不到一次。”
“但是,就是现在,并且就在这个房间里,也仍然存在着发
生这种不寻常事件的机会,”汤普金斯先生固执他说,“不是吗?”
“是的,当然是这样,并且谁也没有理由坚持说,一碗汤不
可能由于其中有一半分子偶然获得同一方向的热速度,而自动地
整碗翻倒在台布上。”
“这样的事就在昨天才发生过呢,”慕德插话说,她现在已
看完她的杂志,对讨论产生兴趣了,“汤洒出来了,而阿姨说,
她连碰也没有碰到桌子。”
教授咯咯地笑了起来。“在这个特殊的场合下嘛,”他说,
“我揣摩,应该对这件事负责的是那个阿姨,而不是麦克斯韦的
妖精。”
“麦克斯韦的妖精?”汤普金斯先生重复了一遍,他感到十
分奇怪。“我本来还以为科学家是最不相信妖精鬼怪这类东西的
人哩。”
“不过,我这样说并不是很认真的,”教授说,“麦克斯韦
是一个著名的物理学家,他应该对这个名词负责。可是,他引进
这样一个统计学妖精的概念,只不过是为了把话说得形象化一些
而已。他用这个概念来阐明关于热现象的辩论。麦克斯韦把他这
个妖精设想成一个动作非常敏捷的小伙子,他能够按照你的命令
去改变每一个分子的运动方向。如果真的有这样一个妖精,那么
热量就有可能从较冷的物体流到较热的物体上去,这时热力学的
基本定律——熵恒增加原理——就一文不值了。”
“熵吗?”汤普金斯先生重复了一次,“我以前听到过这个
名词的。有一次,我的一个同事举行酒会,在喝了几杯以后,他
请来的几个学化学的大学生就用流行歌曲的调子,开始唱了起来:

 增增,减减,
 减减,增增,
 我们要熵怎么办,
 要它减来还是增?

不过,说到头,熵到底是什么东西呢?”
“这倒不难解释。‘熵’只不过是个术语,它所描述的是任
何一个指定的物体或物理系统中分子运动的无序程度。分子之间
的大量无规则的碰撞总是倾向于使熵增大,因为绝对的无序是任
何一个统计系统最可能实现的状态。不过,如果麦克斯韦的妖精
真的存在的话,他很快就会使分子的运动遵循某种秩序,就像一
只好的牧羊狗能够把羊群聚拢起来,使羊群沿着道路前进一样。
这时,熵就会开始减小。我还应该告诉你,玻耳兹曼根据所谓H
定理,在科学中引进了……”
 教授显然忘记了同他谈话的人对物理学实际上几乎一无所
知,根本达不到大学生的水平,所以他在继续往下讲的时候,使
用了许多像“广义参数”啦。“准各态历经系统”啦这类极为生
僻的术语,而且还自以为正在把热力学的基本定律及其与吉布斯
统计力学的关系讲得像水晶那么透彻哩。汤普金斯先生已经耳惯
于听他岳父作这种他理解不了的长篇大论,所以他就以逆来顺受
的哲学家风度吸着他那杯加苏打水的苏格兰威士忌,努力装出很
有心得的样子。但是,统计物理学的这一切精华对于慕德来说肯
定是太深奥了,她把身子蜷缩在沙发上,想尽办法使眼睛不致闭
上。最后,为了把瞌睡赶走,她决定去看看晚饭做得怎么样了。
“夫人要什么东西?”当她走进餐室时,一个穿得很雅致的
高个儿厨师向她鞠了一躬,彬彬有礼地问道。
“什么也不要,我是来同你一块干活的,”她说,心中奇怪
为什么会有这样一个人。这显然是桩特别古怪的事,因为他们从
来没有男厨师,也肯定雇不起男厨师。这个人细高的个儿,橄榄
色的皮肤,长着一个又长又尖的鼻子,那双绿色的眼睛似乎炽燃
着一种奇怪的、强烈的火焰。当慕德注意到他额上的黑发中半露
出两个对称的肉肿块时,她的脊梁上闪过了一阵寒栗。
“也许是我在做梦,”她想,“要不然,这就是靡菲斯特本
人直接从歌剧院跑出来了。”
“是我的丈夫雇你来的吗?”她大声问道,因为她总得说点
什么呀。
“完全不是,”这个古怪的厨师回答说,他极艺术地敲了敲
餐桌,“事实上,我是自愿上这里来的,为的是向你那高贵的父
亲证明,我并不像他所认为的那样是个虚构的人物。请容许我自
我介绍一下,我就是麦克斯韦的妖精。”
“啊!”慕德松了一口气,“那么,你大概不像别的妖精那
么叫人讨厌,你丝毫没有害人的意图。”
“当然没有啦,”妖精宽宏大量地笑了笑,“不过,我很喜
欢开玩笑,现在我就想同你父亲开个玩笑。”
“你想干什么?”慕德问道,她的疑虑还没有完全消除。
“我只是想向他表明,如果让我来办,熵恒增加定律就会彻
底完蛋。为了让你相信我能够做到这一点,我冒昧地请你陪我走
一趟。这根本不会有任何危险,我向你保证。”
妖精说完这些话以后,慕德感到他的手紧紧抓住她的手肘,
同时,她周围的每一件东西都突然变得非常古怪。她餐室中所有
熟悉的物体开始以可怕的速度变大,她向一张椅背看了最后一眼,
它已经�
小提示:按 回车 [Enter] 键 返回书目,按 ← 键 返回上一页, 按 → 键 进入下一页。 赞一下 添加书签加入书架